Log in  \/ 
Register  \/ 


Menno Witter was born in The Netherlands in 1953. He did his PhD with professors Anthony Lohman and Fernando Lopes da Silva at the VU University and VU medical center in Amsterdam, where he published the first detailed anatomical account of the organization of the entorhinal cortex, focusing on its role in hippocampal-cortical interactions (1985). After his Ph.D., he worked with David Amaral and Gary VanHoesen in the US (1985/1986) on the organization of the entorhinal-hippocampal system in primates and continued to work as assistant professor in the department of Anatomy at the Vrije University. In 1989 he published two influential papers on the anatomy of the cortico-hippocampal system, which still are considered 'classics' in the field. In these papers he proposed functional differentiation within the hippocampus and parahippocampus, an issue which is now at the heart of some of the more promising research lines in the hippocampal field. In 1990, together with David Amaral, he initiated the launch of the journal Hippocampus, which, now being in its 19th year, is a major vehicle for communication among scientists in the field. As of 1990, he headed his own research group, focusing on the functional organization of the medial temporal lobe (MTL), in particular in relation to learning and memory and Alzheimer's disease. In 1993, he worked as a visiting scientist and senior consultant with Prof. Dr. G. Matsumoto and Dr. T. Iijima, ETL, Tsukuba, Japan, where he started to use voltage-sensitive dye imaging to study network properties of the hippocampal-parahippocampal system. This powerful approach resulted in the description of networks potentially mediating reverberation, a proposed mechanism for memory storage. This collaboration has continued over the years, focusing on possible interactions between multiple input pathways onto identified neuronal populations.

In 1995, he was appointed as full professor in Anatomy and Embryology at the VU University Medical Center where he continued his work on functional anatomy of the cortico-hippocampal system, combined with in vivo electrophysiology and human functional MRI studies. He contributed significantly to our understanding of parallel input-output pathways between the parahippocampal region and the hippocampus, and the possibility of functional heterogeneity between hippocampal and parahippocampal subfields as well as within the individual subfields. In addition, on the basis of clinical and experimental data, he published a series of influential papers on the role of the midline and intralaminar thalamus in cognition and its contribution to diencephalic amnesia and frontal syndromes. In 1999 he was appointed as scientific director of the Institute for Neuroscience of the VU/VUmc and as director of the Graduate School Neuroscience Amsterdam. He was one of the founding directors of the Center for Neurogenomics and Cognitive Research VU/Vumc (2003).

In 2004 he was appointed as visiting professor in the Centre for the Biology of Memory and the Kavli Institute for Systems Neuroscience at the Norwegian University for Science and Technology (NTNU) in Trondheim. In 2007 he moved to Trondheim, where he continues his work on functional anatomy of the cortico-hippocampal system, relevant to memory processes in particular to spatial memory and navigation. He combines anatomical approaches with in vitro electrophysiology. His current research interests include the study of functional differentiation between cell types and cell layers in the entorhinal cortex, structural and connectional differences between the lateral and medial entorhinal cortex and the development of the entorhinal cortex and its connections. He is also involved in human functional MRI studies that focus on understanding functional heterogeneity within the human MTL.



Contact details

Menno Witter, PhD
Professor Neuroscience, Dept. Neuroscience
Kavli Institute for Systems Neuroscience, Centre for the Biology of Memory
MTFS, Norwegian University of Science and Technology (NTNU)
NO-7489 Trondheim, Norway
Phone: +47 73598249
Fax: +47 73598294
Email: menno.witter at(@) ntnu.no

pubmed: witter mp[author]

NCBI: db=pubmed; Term=Witter MP[Author] NCBI pubmed
  • Related Articles Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes. Front Syst Neurosci. 2017;11:46 Authors: Witter MP, Doan TP, Jacobsen B, Nilssen ES, Ohara S Abstract The entorhinal cortex (EC) is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC) and medial EC (MEC) might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC) and postrhinal cortex, all areas that are considered to belong to the "spatial processing domain" of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation. PMID: 28701931 [PubMed]

Go to top